Name:	ID No.:	_ Date:
Section:	Score:	_
	Preparatory Physical Science (PHS	C001)
	Experiment No. 9	
	Free Fall	

Key Terms

Free fall Average velocity Instantaneous velocity

Experiment Objectives

- To investigate and analyze the motion of different free falling objects
- To compare the motion of different free falling objects
- To determine the acceleration of gravity as the object falls toward the earth's surface.

Theory

If an object is allowed to fall from the state of rest (u = 0) under the influence of constant gravitational field, it will perform a linear movement, i.e., it will fall downward. The equation of distance covered by mass is given by

$$s = ut + \frac{1}{2}at^2$$

In this case we can replace with h(s = h), where h is the height from which the object is falling and a is replaced by g(a = g), we get,

$$h = ut + \frac{1}{2}gt^2$$

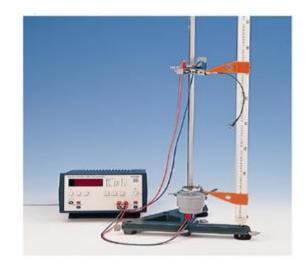
Applying the initial conditions, initial velocity u = 0, we can write

$$h = \frac{1}{2}gt^2$$

This is the equation of straight line. If we plot a graph between h and t^2 and determine slope of the line m. Then 1/2 of the slope of h vs t^2 graph gives us the value of g. We can determine g from the following relation.

$$m = \frac{1}{2}g$$
 or $g = 2m$

In this experiment, the student will measure the distance a free falling object has fallen and measure the time using a 6V A.C spark timing machine used in previous experiment. The acceleration due gravity is then found and compare to its standardized value 9.8m/s².

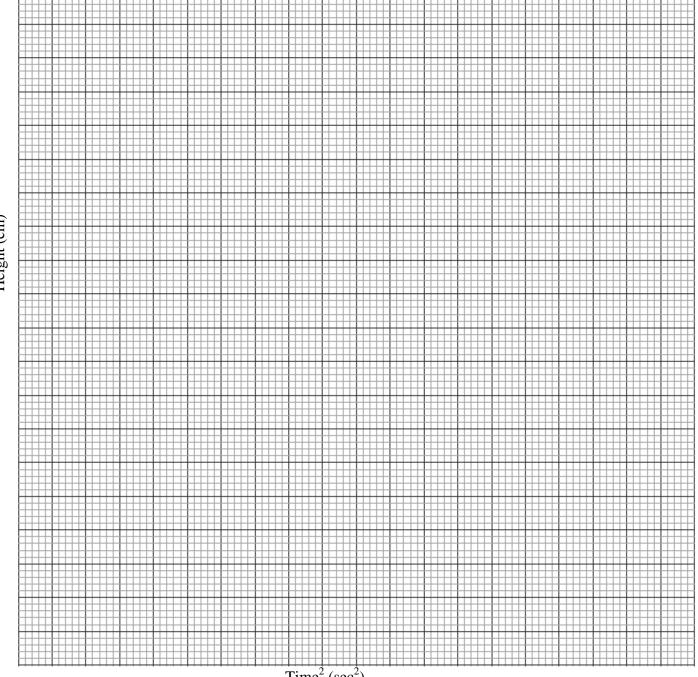

PHSC-001 Page 1 of 6

Materials and Equipment

- Three different small objects (spherical balls made of wood, copper, and aluminum)
- Recording tape

Procedure

- Release the steel ball form 10 cm and note the time at which ball hits the pan.
- Repeat the procedure for various heights starting from 10 cm up to 100 cm and note the time for each height.
- Do not forget to adjust the pan under the arrest switch each time by hand after each position.
- Record the height measured and its corresponding time (t) in the Table 1.
- Calculate corresponding t² and write in the Table 1.
- Use the data obtained in the Table 1 to plot height-time and height-time² graphs in the graphs provided in Figures 2 and 3.


Table A

(Aluminum ball)

Obs. No.	Height (h) (cm)	Time of fall (t) (sec)	Time-Square (t ²) (sec ²)	$g = \frac{2h}{t^2}$ cm/sec^2
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

PHSC-001 Page 2 of 6

Time² (sec²)

PHSC-001 Page **3** of **6**

Table B

(Steel ball)

Obs. No.	Height (h) (cm)	Time of fall (t) (sec)	Time-Square (t ²) (sec ²)	$g = \frac{2h}{t^2}$ cm/sec^2
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

	of graph A:
Calculate	the acceleration due to gravity using the relation $g = 2m$
The slop	of graph B:

PHSC-001 Page **4** of **6**

PHSC-001 Page 5 of 6

3. Compare the value obtained with the value of acceleration due to gravity

Value of g obtained from graph	Constant value of g

Questions

From the calculated slope value and the constant value of $g = 9.8 \text{m/s}^2$ (or 980 cm/s^2) calculate the experimental error by using the following formula.

1.

$$Experimental\ Error = \frac{|Calculated\ value - Constant\ value|}{Constant\ value} \times 100$$

2.

$$Experimental\ Error = \frac{|Calculated\ value - Constant\ value|}{Constant\ value} \times 100$$

End of the lab exercise